当前位置:首页 > 试题 > 数学试题

分数应用题教学设计

时间:2024-12-07 19:00:23
分数应用题教学设计通用15篇

分数应用题教学设计通用15篇

作为一名专为他人授业解惑的人民教师,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么问题来了,教学设计应该怎么写?以下是小编精心整理的分数应用题教学设计,欢迎阅读,希望大家能够喜欢。

分数应用题教学设计1

教学目标

1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位1,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位1

1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位1?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位1?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

(米)

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.课件演示:

2.列式解答

四、课堂小结

这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

六、板书设计

分数应用题教学设计2

一、教学目标:

1、通过解决简单的实际问题,使学生进一步掌握分数乘、除法应用题的解题思路以及它们之间的内在联系,激发学习兴趣。

2、经历把实际问题转化为数学问题的过程,提高分析问题和解决问题的能力。

二、教学重点:掌握分数应用题的解题方法。

三、教学难点:分析实际问题中的数量关系。

四、教学过程:

(一)、复习:

1、出示例题:

某村今年植树20xx棵,_________,去年植树多少棵?

(设去年植树x棵)

2、连线:

1。去年植树是今年的3/5 (1—1/4)ⅹ=20xx或20xx÷(1—1/4)

2。今年植树是去年的3/52000×(1+1/4)

3。今年比去年少1/42000×3/5

4。去年比今年少1/43/5ⅹ=20xx或20xx÷3/5

5。去年比今年多1/4(1+1/4)ⅹ=20xx或20xx÷(1+1/4)

6。今年比去年多1/42000×(1—1/4)

(二)、解法分类,归纳总结。

1、小组交流:

A:解决分数应用题的步骤。

B:把这六题进行分类,并说说分类的依据。

2、小组汇报:

A:解决分数应用题的步骤。

a:画出分率句,找出单位“1”。

b:写出数量关系式。

c:列出方程再解方程。

B:把这六题进行分类,并说说分类的依据。

a:当单位“1”是已知的的量时如果是求一个数的几分之几是多少用乘法计算。

b:如果是求一个数是另一个数的几分之几用除法计算。

c:当单位“1”是未知的量时用除法或用方程计算。

(三)、练习

1、说出单位 ……此处隐藏19401个字……道题时,由于审题马虎,而且受基本工程问题解法的影响,错误地列成:1÷(1/6+1/18),这是同学们应引起注意的地方。

练习:一批货物,用大小两辆卡车同时运送,5小时可以运完。如果用小卡车单独运,15小时可以运完。问大卡车单独运几小时可以运完?

例5加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?

[思路说明]题目要求剩下的工作量由丙1人做,还要几天完成,必须知道剩下的工作量和丙的工作效率。

加工一批零件,单独1人做,甲要10天完成,甲一天加工一批零件的1/10;乙要15天完成,乙一天加工一批零件的1/15;丙要12天完成,丙一天加工一批零件的1/12。甲、乙合做一天,完成这批零件的1/10+1/15=1/6,合做5天完成这批零件的1/6×5=5/6,工作总量“1”减去甲、乙合做5天的工作量,就得到剩下的工作量。把剩下的工作量除以丙的工作效率,就可以求出剩下的工作量由丙1人做还要几天完成。

综合算式:

[1-(1/10+1/15)×5]÷1/12

=[1-1/6×5]÷1/12

=1/6÷1/12=2(天)

评点这是一道较复杂的工程问题,是工程问题中的主要题型之一,也是升学或毕业考试中最常见的试题之一。它的特点是求剩余部分的工作量完成的时间。关键是正确求出剩余部分的工作量。从工作总量“1”中减去已完成的工作量,就是剩余部分的工作量。有的同学由于审题不细,又受前面几例工程问题的解法的影响,容易错误地列成:[1÷(1/10+1/15)×5]÷1/12.

练习:加工一批零件,甲独做要8天完成,乙独做要7天完成,丙独做要14天完成,三人合作2天后,甲因病休息,乙、丙两人继续合做还要几天完成?

例6一件工程,甲、乙合作6天可以完成。现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。这件工程如果由甲单独做,需要几天完成?

[思路说明]一件工程,甲、乙合作6天可以完成,可知甲、乙合作1天完成这件工程的1/6,甲、乙合作2天,完成这件工程的1/6×2=1/3。用工作总量“1”减去甲、乙合作2天的工作量1/3,所得的差1-1/3=2/3,就是余下的工作量。又知余下的工程由乙独做用了8天正好做完,用余下的工作量除以8,就可以求出1天的工作量,即乙的工作效率。把甲、乙工作效率之和减去乙的工作效率,就可得到甲的工作效率。求出了甲的工作效率,只要把工作总量“1”除以甲的工作效率,就可得到甲独做这件工程所需要的天数了。

综合算式:

1÷[1/6-(1-1/6×2)÷8]

=1÷[1/6-(1-1/3)÷8]=1÷[1/6-2/3÷8]

=1÷[1/6-1/12]=1÷1/12=12(天)

评点这也是一道复杂的工程问题。解题的关键是正确求出甲的工作效率。要求出甲的工作效率,解题的步骤较多,只有熟悉和掌握工程问题的结构特点和解题思路,熟练掌握前面5道例题的解题方法及解题的技能、技巧,才能正确顺利地解答本题。

练习:一项工程,甲、乙两队合做9天完成,乙、丙两队合做12天完成,现在甲、乙两队合做了3天,接着乙、丙两队又合做了6天,最后由丙队单独12天完成了整个工程。如果整个工程由甲、丙两队合做需要几天完成?

分数应用题教学设计15

教学内容:教材第60页练习十二第8~12题。

教学要求:

1.使学生进一步掌握列含有未知数工的等式解答加、减法简单应用题的思路和方法,以及解题的步骤,能正确地列出含有未知数x的等式解答加、减法一步计算应用题。

2.使学生进一步认识有关的加、减法应用题的数量关系,提高分析能力和解题能力。

教学过程:

一、复习旧知

1.口算。

小黑板出示练习十二第8题,指名学生口算。

2.列含有未知数j的方法解文字题。

(1)一个数减去170后得150,这个数是多少?

(2)280加上某数后等于400,求某数。

(3)135比什么数多287

指名三人板演,其余学生做在练习本上。

集体订正。结合提问每道题是怎样想的。

指出:列含有未知数的等式解这类题时,都要先用刀表示未知数,再根据题意列出等式,然后求出未知数x。

3.揭示课题。

我们在列含有未知数x的等式解答加、减法应用题时,也是按这样的步骤来解答的。今天这节课,就来练习列含有未知’数的等式解答应用题。(板书课题)

二、解应用题练习

1.练习十二第9题。

指名读题。

提问:按照题意,这道题有怎样的数量关系式?

你能用列含有未知数x的等式解答吗?

让学生做在练习本上。

学生口答是怎样做的,老师板书。

提问:解答这道应用题时你是分哪几步的?x一720=280是根据什么列出来的?谁能说一说最重要的是哪一步?

2.根据下面的条件,说出数量关系式。

(1)一批货物,运走30吨,还剩15吨。

(2)原有货物30吨,运来一批后,一共45吨。

(3)原有货物45吨,运走一批后,还剩30吨。

(4)篮球比足球多20个。

(5)科技书比故事书少100本。

3.练习补充题。

(1)同学们植树,四年级植96棵,比三年级多植18棵,三年级植多少棵?

(2)同学们植树,四年级植96棵,比五年级少植18棵,五年级植多少棵?

指名两人板演,其余学生做在练习本上。

集体订正。结合让学生说说列等式时是怎样想的。

提问:这两道题列的等式,为什么第(1)题是x+18=96,而第(2)题要用x一18=967(或第(1)题是96一x=18,而第(2)题要用

x一96=187)

小结:列含有未知数j的等式解答比多、少的应用题时,一定要根据谁比谁多(少)几的条件想数量关系,再根据数量关系式列等式解答。

4.练习十二第11题。

学生读题,然后要求用直接列算式计算和列含有未知数j的等式两种方法解答。

学生做在练习本上。

指名学生口答,老师板书。

提问:直接列算式时你是怎样想的?列含有未知数工的等式时你是怎样想的?哪一种方法是顺着题意想的?

小结:列含有未知数j的等式解答应用题时,一般只要顺着题意想数量关系式,列出等式来解答。这样想,思考过程比较容易。

三、课堂小结

这节课,我们练习了列含有未知数的等式解答应用题。谁来说一说,用这种方法解答应用题时要分哪几步?怎样列出含有未知数x的等式?

四、课堂作业

练习十二第10、12题。

《分数应用题教学设计通用15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式